Figura professionale: Big Data Engineer / Data Scientist

Nome Cognome: E. A.Età: 36
Cellulare/Telefono: Riservato!E-mail: Riservato!
CV Allegato: Riservato!Categoria CV: Business Intelligence / Data Scientist / DWH
Sede preferita: Milano e Estero

Accesso Full al database con 29.998 CV a partire da € 5,00    ABBONATI SUBITO!



Sommario

Big Data Engineer / Data Scientist

Competenze

  • Apache Kafka, s3 log files, Redshift warehouse
  • Spark, Hadoop MadReduce
  • Java, Hadoop MapReduce, Avro, GeoJSON, Oozie
  • Java, Hadoop MapReduce, Avro, GeoJSON, Ooziemil

Esperienze

Giugno 2014 – Oggi Figura ricoperta Big Data Engineer; Datore di lavoro BlisMedia; Luogo London
Principali attività  e responsabilità 
Responsible of mantaining and developing a data system based on Kafka and Hadoop, which generates a large amount of data, approximately 30GB / hour, distributed over more than 20 servers. Working on the recovery of these logs from remote servers, collation and storage in a centralized location. Responsible of generating and mantaining advanced reporting systems, data insights and visualizations on graphs and maps:
?? Apache Kafka for streaming log files from many systems
?? Used s3 log files and Redshift warehouse as a data source
?? Spark and Hadoop MadReduce for data processing, warehousing and querying
Introduced Machine Learning algorithms and statistical models for recommendation systems and optimising decisions:
?? Built complex algorithms to support sophisticated targeting and analytics products
?? Developed data insights that are fed back into the sales process
?? Created vast operational efficiencies through automation of many of Blis key proprietary allowing
smarter automatic buying decisions systems
Relevant Projects:
Smart PIN, Technology that filters out inaccurate data, from publishers and exchanges, that has not been derived from the deviceÂ’s GPS or WiFi function. Java, Hadoop MapReduce, Avro, GeoJSON, Oozie
Static IP Finder, Tool that collects relationship between IP addresses and geographical location and attempts to assign a lat/lng to each IP address received on the platform. Java, Hadoop MapReduce, PostgreSQL, Oozie, DBScan clustering algorithm
Real Time Bidding Optimisation, Optimises campaigns down to handsets, apps and sites, locations, channel, creative, gender, format and age to ensures the best possible campaign results for advertisers. Improved CTR, eCPC, margin and video completion by 20% and validated by A/B testing. Scala, Spark, Luigi, MySQL, Redis, RandomForest MLlib
Footfall Reporting System, Tool used for analysis and reporting across the various location data set providing customer journey insights between relationships of different locations and frequency of visit. Scala, Spark, Redshift, Luigi, Google Maps API
Look alike audience, Model used to build larger audiences from smaller segments to create reach for advertisers. The larger audience reflects the benchmark characteristics of the original audience. It is also used to reach new prospects that look like a marketerÂ’s best customers. Scala, Spark, Redshift, Luigi, Cosine Similarity, Entity Resolution, VP-Tree, K-Means

Settembre 2013 – Maggio 2014 Figura ricoperta R&D Software Engineer; Datore di lavoro TerraSwarm Research Center, UC Berkeley, CA; Luogo Berkeley, CA, United States
Principali attività  e responsabilità 
Research work:
?? Requirements formalization of Signal Temporal Logic (STL) reasoning: a specific domain language for defining constraints on real-valued signals in the context of analog and mixed-signal circuits
?? Developer contributor of Ptolemy II, a Java framework for modeling, simulation, and design of concurrent, real-time, embedded systems.
Courses taken:
?? Machine Learning
?? Data Science

Febbraio 2013 – Aprile 2013 Figura ricoperta Researcher Engineer; Datore di lavoro ACCESS Linnaeus Centre, KTH; Luogo Stockholm, Sweden
Principali attività  e responsabilità 
Optimisation techniques applied on Smart Cities and Intelligent Transportation. Particular focus on Privacy Preserving and Security on investigating and developing an efficient distributed algorithm for a "Car-parking efficiency" problem.

Istruzione e Formazione

Data

Dicembre 2012

Titolo della qualifica rilasciata

Master's Degree in Software Engineering

Istituto di istruzione o formazione

University of L’Aquila

Luogo

L’Aquila, Italy

Principali tematiche / competenze professionali acquisite

Majors: Distributed programming, Interactive systems design, Cryptography in information security, Spatial and Distributed databases, Algorithms, Information processing systems.

Data

Dicembre 2010

Titolo della qualifica rilasciata

Bachelor's Degree in Software Engineering

Istituto di istruzione o formazione

University of L’Aquila

Luogo

L'Aquila

Principali tematiche / competenze professionali acquisite

Majors: Object-oriented Programming, Web Development, Relational Databases, Computer networks, Computer Architecture and Operating Systems. 

Conoscenze linguistiche

Lingua

Italiano

Capacità di lettura/scrittura

Madrelingua

Capacità di espressione orale

Madrelingua

Lingua

English

Capacità di lettura/scrittura

Ottimo

Capacità di espressione orale

Ottimo

Conoscenze informatiche

Capacità e competenze informatiche

Machine Learning: Predictive Analytics, Recommender Systems, Optimisation, Data Mining, Distributed Computation, Statistical Modeling, Clustering, Supervised learning, Functional Programming, Agile

Languages: Scala, Java, Python, SQL, Bash, Matlab

Technologies: Spark, Hadoop, MapReduce, Hive, Redshift, Druid, Luigi, Oozie, MLlib, SkLearn UNIX, Linux, OS X, Windows 

127 total views, 2 today